Long‐term vaccine‐induced heterologous protection against H5N1 influenza viruses in the ferret model

نویسندگان

  • Mariette F. Ducatez
  • Ashley Webb
  • Jeri‐Carol Crumpton
  • Richard J. Webby
چکیده

BACKGROUND Highly pathogenic H5N1 influenza viruses reemerged in humans in 2003 and have caused fatal human infections in Asia and Africa as well as ongoing outbreaks in poultry. These viruses have evolved substantially and are now so antigenically varied that a single vaccine antigen may not protect against all circulating strains. Nevertheless, studies have shown that substantial cross-reactivity can be achieved with H5N1 vaccines. These studies have not, however, addressed the issue of duration of such cross-reactive protection. OBJECTIVES To directly address this using the ferret model, we used two recommended World Health Organization H5N1 vaccine seed strains - A/Vietnam/1203/04 (clade 1) and A/duck/Hunan/795/02 (clade 2.1) - seven single, double, or triple mutant viruses based on A/Vietnam/1203/04, and the ancestral viruses A and D, selected from sequences at nodes of the hemagglutinin and neuraminidase gene phylogenies to represent antigenically diverse progeny H5N1 subclades as vaccine antigens. RESULTS All inactivated whole-virus vaccines provided full protection against morbidity and mortality in ferrets challenged with the highly pathogenic H5N1 strain A/Vietnam/1203/04 5 months and 1 year after immunization. CONCLUSION If an H5N1 pandemic was to arise, and with the hypothesis that one can extrapolate the results from three doses of a whole-virion vaccine in ferrets to the available split vaccines for use in humans, the population could be efficiently immunized with currently available H5N1 vaccines, while the homologous vaccine is under production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recombinant Vaccine of H5N1 HA1 Fused with Foldon and Human IgG Fc Induced Complete Cross-Clade Protection against Divergent H5N1 Viruses

Development of effective vaccines to prevent influenza, particularly highly pathogenic avian influenza (HPAI) caused by influenza A virus (IAV) subtype H5N1, is a challenging goal. In this study, we designed and constructed two recombinant influenza vaccine candidates by fusing hemagglutinin 1 (HA1) fragment of A/Anhui/1/2005(H5N1) to either Fc of human IgG (HA1-Fc) or foldon plus Fc (HA1-Fdc),...

متن کامل

M2SR, a novel live influenza vaccine, protects mice and ferrets against highly pathogenic avian influenza.

The emergence of highly pathogenic avian influenza H5N1 viruses has heightened global concern about the threat posed by pandemic influenza. To address the need for a highly effective universal influenza vaccine, we developed a novel M2-deficient single replication (M2SR) influenza vaccine virus and previously reported that it provided strong heterosubtypic protection against seasonal influenza ...

متن کامل

Effects of homologous and heterologous neuraminidase vaccines in chickens against H5N1 highly pathogenic avian influenza.

The 2004 Asian H5N1 epizootic outbreak indicates the urgent need for vaccines against highly pathogenic avian influenza (HPAI) virus. The manufacture of inactivated whole-virus vaccines from HPAI viruses by traditional methods is not feasible for safety reasons as well as technical issues. The low pathogenic avian influenza A/wild bird feces/CSM2/02 (H5N3) virus was used as a heterologous neura...

متن کامل

A VLP Vaccine Induces Broad-Spectrum Cross-Protective Antibody Immunity against H5N1 and H1N1 Subtypes of Influenza A Virus

The recent threats of influenza epidemics and pandemics have prioritized the development of a universal vaccine that offers protection against a wider variety of influenza infections. Here, we demonstrate a genetically modified virus-like particle (VLP) vaccine, referred to as H5M2eN1-VLP, that increased the antigenic content of NA and induced rapid recall of antibody against HA(2) after viral ...

متن کامل

Evaluation of heterosubtypic cross-protection against highly pathogenic H5N1 by active infection with human seasonal influenza A virus or trivalent inactivated vaccine immunization in ferret models.

The threat of highly pathogenic avian influenza (HPAI) H5N1 viruses to cause the next pandemic remains a major concern. Here, we evaluated the cross-protection induced by natural infection of human seasonal influenza strains or immunization with trivalent inactivated influenza vaccine (TIV) against HPAI H5N1 (A/Vietnam/1203/2004) virus in ferrets. Groups were treated with PBS (group A), infecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013